

11th East-European Conference on Advances in Databases and Information Systems 29.9 - 03.10, 2007, Varna, Bulgaria

Optimal Query Mapping in Mobile OLAP

Ilias Michalarias and Hans -J. Lenz

Freie Universität Berlin

{ilmich, hjlenz}@wiwiss.fu-berlin.de

Overview

- I. mOLAP
- II. Query Mapping
- III.An Analytical Framework
- **IV.**Evaluation
- V.Outlook

- I. mobile OLAP Research Context
- II. Query Mapping in mOLAP
- III. An Analytical Framework for Derivability Estimation
- IV. Evaluation
- V. Outlook

mOLAP Application Scenario

OLAP Server

- Brokers accessing the stock market gallery data mart:
 - At opening and closing times different stocks in different financial dimensions are analyzed by many traders using some portable device
 - Some of these stocks are more popular than others, similarly, some analytical dimensions are more important than others
 - In this situation, a data mart equipped with a broadcast gateway will be responsible for serving the incoming requests

II. Query Mapping

Analytical
Frameworl

IV.EvaluationV.Outlook

mOLAP Research Context

Major Issues:

- Management of Multidimensional data in wireless networks
- Providing equal/comparable functionality with desktop counterparts
- Cope with limited resources such as bandwidth, energy and small screen size
- Fundamental Requirement:
 - Offline functionality
- Wireless bandwidth the usual bottleneck of the system
- Transmitted sub-cubes are items order of magnitude bigger than usually assumed by conventional broadcast systems e.g., web pages

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

- Client-Server Network Architecture
- Broadcast-based Dissemination
- Clients may have to locally process data

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

Optimization Options

Optimization by means of:

Subsumption

- In conjunction with wireless broadcast reduces the number of necessary transmissions [Sharaf et al., 2004] [Michalarias et al., 2005]
- Compression
 - Receiving clients are served faster
 - Indirect reduction of waiting time for pending requests [Sharaf et al., 2003] [Michalarias et al., 2006, 2007]

Lattice

II. Ouerv

III.An

IV.Evaluation

Why Query Mapping?

• Upon receipt, queries are mapped to the corresponding nodes of the aggregation lattice because:

- Point-to-Point system proven inefficient
- Broadcast systems perform better with a limited number of data items
- Subsumption exploitation becomes higher and thus each transmission (broadcast) serves multiple requests

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.EvaluationV.Outlook

Aggregation Lattices

ı		
Ι.		

II. Query Mapping

III.An Analytical Frameworl

IV.Evaluation

V.Outlook

Hierarchies					
Product	Store	Time			
ALL P ₀		ALL T ₀			
î	ALL S ₀	î			
Category P ₁	î	Year T ₁			
î	StoreID S ₁	î			
Code P ₂		Day T ₂			

of DCL nodes=
$$2^n$$

of hDCL nodes=
$$\prod_{i=1}^{N} Gr(i)$$

Data Cube Lattice (DCL)

Hierarchical Lattice (hDCL)

Query Mapping to Aggregation

I. mOLAP

Mapping

IV.Evaluation

V.Outlook

II. Query

III.An

Lattices

An Example:

SELECT

{ [Product].[Category].[Drinks] } ON COLUMNS,

{ [Time].[Year].AllMembers } ON ROWS

FROM [TestCube] P₂S₁T₁ P1S1T2 P₁S₁T₁ 211 212 112 **PST Mapping** 111 S₁T₂ P₁T₁ P₂T₁ P₁T₂ P₂T₂ S₁T₁ 210 201 102 PS ST 110 101 011 T₂ 100 200 002 010 001 100 010 000 000

Data Cube Lattice (DCL)

Hierarchical Lattice (hDCL)

An Analytical Framework for mOLAP

I. mOLAP
II. Query
Mapping
III.An
Analytical
Framework
IV. Evaluation

- Problem: Query mapping (in mOLAP) using the DCL or the hDCL?
- Motivation
 - Previous approaches rather intuitive no formal background
 - Related work does not provide any clear answer
- Objective
 - Analyze the impact of hierarchies on mOLAP
 - Optimize subsumption exploitation among sub-cubes
- Information provided
 - Subsumption probabilities in general
 - mOLAP specific derivation Probabilities

Trade-offs with query mapping

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

V.Outlook

coarse grained querying (without hierarchies)

fine grained querying (with hierarchies)

Metric/Stucture	DCL	hDCL	
Client side processing	more	less	
Traffic per query	more	less	
Overall Traffic	?	?	
# of data items	less	more	
Offline functionality	enhanced	limited	

An Analytical Framework for mOLAP

- I. mOLAP
 II. Query
 Mapping
 III.An
 Analytical
- IV.EvaluationV.Outlook

Framework

- Its objective is to quantify the degree of subsumption exploitation in mOLAP
- Features
 - * The mOLAP queue is modeled as a *multiset*
 - The query distribution is based on server collected statistics making the framework independent of the workload
 - Each probability is computed both for *DCL* and *hDCL* mapping
 - Provides the basis for additional computations

Probabilities

- I. mOLAP
 II. Query
 Mapping
- III.An Analytical Framework

IV.EvaluationV.Outlook

- 1. $P(e_a \succeq e_b)$: In a multiset Q of lattice nodes, the probability that a selected element $e_a \in Q$ is an ancestor of another selected element $e_b \in Q$.
- 2. $P(e_a \succeq Q)$: In a multiset \mathbf{Q} , the probability that a selected element $e_a \in Q$ is an ancestor of every element in \mathbf{Q} .
- 3. $P(\exists \ e : e \succeq Q)$: In a multiset \mathbf{Q} , the probability that there exists one element, which is an ancestor of every element in \mathbf{Q} .
- 4. $P(e_a \succeq q \subseteq Q)$: In a multiset \mathbb{Q} , the probability that a selected element $e_a \in Q$ is an ancestor of exactly |q| (|q| 1 + itself) elements of \mathbb{Q} .
- 5. $P(e_a \succeq q^+ \subseteq Q)$: In a multiset \mathbf{Q} , the probability that a selected element $e_a \in Q$ is an ancestor of at least |q| (|q|-1+itself) elements of \mathbf{Q} .
- 6. $P(\exists \ e : e \succeq q \subseteq Q)$: In a multiset \mathbf{Q} , the probability that there exists at least one element, which is ancestor of exactly |q| (|q|-1+itself) elements of \mathbf{Q} .

Relevance to mOLAP

I. mOLAP

II. Ouerv

Analytical Framework

IV.Evaluation

V.Outlook

III.An

Subsumption AFTER scheduling decision approach (STOBS, SBS)

1st Step: Item to be transmitted decided by scheduling metrics (irrelevant to subsumption)

2nd Step: Subsumptions examined considering the already defined ancestor

Finally: Broadcast q_8 and serve $\{q_6, q_2, q_4\}$

Subsumption BEFORE scheduling decision approach (FCLOS)

1st Step: All elements ancestor candidates

2nd Step: Find optimal grouping (after having checked all combinations)

Finally: Broadcast q_8 and serve $\{q_8, q_1, q_3, q_9\}$

 $P(e_{\mathsf{a}} \succeq q \subseteq Q)$: In a multiset \mathbf{Q} , the probability that a selected element $e_{\mathsf{a}} \in Q$ is an ancestor of exactly |q| (|q|-1+itself) elements of \mathbf{Q} .

 $P(\exists \ e : e \succeq q \subseteq Q)$: In a multiset \mathbf{Q} , the probability that there exists at least one element, which is ancestor of exactly |q| (|q|-1+itself) elements of \mathbf{Q} .

Analytical Results (Queue of 30 queries)

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

- P: In a multiset/queue Q, the probability that a selected element of Q is an ancestor of at least lqlelements of Q (STOBS related)
- P: In a multiset/queue Q, the probability that there is an element of Q is an ancestor of |q| elements of Q (FCLOS related)

Experimental Environment

- mOLAP application experiment
- Mobile clients issue OLAP queries
- FCLOS and STOBS evaluated against their respective hDCL extensions
- Datasets used
 - A real data mart provided by an OLAP company
 - Semi-synthetic

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.EvaluationV.Outlook

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

V.Outlook

Access time reduced (by around 50%) with the DCL variant for both scheduling approaches

Subsumption Exploitation

I. mOLAP

II. Query Mapping

III.An Analytical Framework

IV.Evaluation

- •This metric translates more directly to the information provided by the analytical framework.
- The analytical results are confirmed by the experiments (and vice-versa)

Per Query Traffic

I. mOLAP

II. Query Mapping

III.An Analytical Frameworl

IV.Evaluation

V.Outlook

Per query traffic reduced with the DCL variant for both scheduling approaches

- I. mOLAP
 II. Query
 Mapping
- III.An Analytical Framework
- IV.Evaluation

- * DCL vs. hDCL in mOLAP:
 - DCL provides optimal derivation exploitation
 - Don't use hierarchies
- mOLAP schedulers:
 - Pre-defining the node to be transmitted and then checking derivations **reduces** the number of simultaneously served requests
 - If every element of the queue is considered as candidate for transmission, the number of simultaneously served requests **increases**

- I. mOLAP
 II. Query
 Mapping
 III.An
 Analytica
 Framewo
- IV.Evaluation V.Outlook

- (1) M. A. Sharaf, Y. Sismanis, A. Labrinidis, P. Chrysanthis and N. Roussopoulos. *Efficient Dissemination of Aggregate Data over the Wireless Web*. International Workshop on the Web and Databases (WebDB), pages 93–98, June 2003.
- (2) Y. Sismanis, N. Roussopoulos, A. Deligianannakis, and Y. Kotidis. *Dwarf: Shrinking the Petacube*. ACM SIGMOD, pages 464–475, 2002.
- (3) I. Michalarias and H.-J. Lenz. *Dissemination of Multidimensional Data Using Broadcast Clusters*. In Distributed Computing and Internet Technology, volume 3816 of LNCS, pages 573–584. Springer, 2005.
- (4) I. Michalarias, V. Boucharas and H.-J. Lenz. *Hybrid Scheduling for Aggregated Data Delivery in Wireless Networks*. In Proceedings of the 1st International Conference on Communications and Networking in China, 2006. IEEE.
- (5) I.Michalarias and Arkadiy Omelchenko. *Compressed Aggregations for mobile OLAP Dissemination*. In Proceedings of the 18th International Workshop on Database and Expert Systems Applications, pages 609-614, 2007.IEEE

Discussion

- I. mOLAP
- II. Query Mapping
- III.An
 Analytical
 Frameworl
- IV.Evaluation
- V.Outlook

Questions?